THE BINDING OF Ca^{2+} AND Mg^{2+} TO HUMAN SERUM ALBUMIN: A **CALORIMETRIC STUDY**

DELBERT J. EATOUGH, TRESCOTT E. JENSEN AND LEE D. HANSEN Thermochemical Institute, Brigham Young University, Provo, Utah 84602 (U.S.A.)

HANS F. LOKEN AND SELWYN J. REHFELD

Veterans Administration Hospital (113A) and Department of Laboratory Medicine, University of California, San Francisco, California 94121 (U.S.A.) (Rccxivd 20 occober *1977)*

ABSTRACT

The binding of calcium and magnesium to human serum aibumin has been studied in the pH region 2.5–8.0 by a calorimetric procedure. Both metal ions bind **to the carboxylate groups of albumin. 36 and 44 carboxylate groups appear to be** involved in the binding of Ca^{2+} and Mg^{2+} , respectively. Based on previously reported results that twelve Ca^{2+} ions are the maximum which can bind to albumin, the results **given here support previous X-ray crystallographic cedence that three carboxyiate** groups can be involved in the binding of a Ca^{2+} by a protein. The data also confirm that Ca^{2+} and Mg^{2+} binding is competitive. Binding of the cations to the carboxylate **groups appears to involve the breaking of carboxylate-imidazole hydrogen bonds in the protein. Log K, dH and dS values obtained for the binding of metal ions to** albumin in aqueous solution at 25° C are $2.72 + 0.02$, $0.0 + 0.1$ kcal/mole, and $12.4 +$ **0.3 cal/mole K for Ca²⁺ and 1.12** \pm **0.05. -0.2** \pm **0.1 kcal/mole, and 4.5** \pm **0.3** cal/mole K for Mg²⁺, respectively.

INTRODUCTION

Calcium and magnesium binding to proteins in serum plays an integral role in homeostatic mechanisms for these two elements_ A thorough understanding of the chemical nature of the binding of metal ions to plasma proteins and the factors **which can influence it are therefore fundamental to the understanding of calcium and magnesium utilization by the body. Binding of these metal ions to albumin is governed** by such factors as pH, ionic concentration, and temperature¹⁻⁹. The binding of **both Ca'+ and Mg2+ to albumin has been studied by various techniques and models** have been proposed to explain the observed binding⁴⁻⁶. The majority of work has **been** done on the binding of Ca^{2+} to albumin. The reported^{1, 2, 8-15} number of **Ca"'. ions which can be.bound by a molecule of albumin varies from 5 to 12 in the** pH range 6.5 to 8.5, depending on the pH, temperature, calcium concentration, and

presence of impurities in the protein preparation, i.e. fatty acids, cholesterol, etc. The work of Pedersen^{1, 8, 9} indicates 12 is the maximum number of Ca^{2+} ions bound over the temperature range 4-37[°]C and pH range 6.5-8.5. Reported dissociation constants vary from 10^{-2} to 7 \times 10⁻⁴, although most values lie between 10^{-2} and **lo- 3 (refs. 1. 3, 7-11. 13. 15-19). Most studies have indicated the binding involves** carboxyl groups with at least two carboxyl groups involved for each Ca²⁺ bound. **X-ray structural data on other Ca2' -protein systems** (i.e. **thermolysin, z-amylase,** etc.) suggest the number of carboxyl groups involved in the binding could vary from **two to fou?. Involvement of imidazole groups in the calcium binding in the neutral** transition region²⁰ has been suggested by Zurawski and Foster²¹, Harmsen, et al.⁴, Saroff and Lewis¹⁵ and Pedersen^{1, 8, 9}. A model has been proposed by Harmsen **et a.L-z and Moore6 whereby the first calcium ion which is bound to the protein** molecule initiates secondary and/or tertiary changes in the protein molecule allowing **the other possible binding sites to become available for complexation. Harmsen et aL5, Zurawski and Foster'** ' **and Eastman et al.' have proposed calcium binding is accompanied by conformational changes in the protein molecule involving the breaking of imidazole-carboxyi hydrogen bonds similar to those observed in the** folded to non-folded tertiary structure change²²⁻²⁵ (the N-F transition) in the pH **region where** imidazole ionization occurs.

The binding of Mg^{2+} to human albumin has been studied by equilibrium dialysis^{12, 26} and by specific divalent cation electrodes^{27, 28}. The results indicate the $\log K$ value for binding of Mg²⁺ to albumin is equal to²⁷ or smaller than¹² that **for Ca'*. The maximum number of Mg'* ions bound per molecule of albumin** reported²⁸ is 8. The binding of Mg^{2+} to human albumin appears to increase with increasing pH^{27} ²⁸ and to be temperature independent²⁸.

We report here titration calorimetry studies of the binding of Ca^{2+} and Mg^{2+} to two samples of human serum albumin. The calorimetric technique used allows **the direct study of the protein functional groups involved in metal ion binding. In addition, calorimetric vs. van 't Hoff** *AH* **values are compared and a complete thermodynamic description of the metal ion binding is given. The binding is found** to involve carboxylate groups. Log K, ΔH , ΔS and \bar{v} values at 25[°]C are reported for **the interactions studied.**

EXPERIMENTAL

Materials

Reagent grade HCI (Baker "analyzed" reagent), CaCl₂ (B and A reagent) and MgCl₂ (MCW, reagent) were used in the preparation of solutions. The HCl solutions were standardized by pH titration with Tris and the CaCl₂ and MgCl₂ solutions were standardized by Mohr titration with AgNO₃. The albumin samples, designated I and II (I-Miles, human albumin, Fraction V, fatty acid free, lot 31 and II-NBC human albumin, $4 \times$ crystalline, lot 9624), were used without further purification. Isoelectric focusing of I indicated only one fraction. A molecular weight of 69 000 was used for **both** albumin samples. All solutions were made using freshly distilled, deionized water and stored under N_2 until used.

Calorimetric srudies

The calorimetric titrations were conducted using a previously described microisoperibol titration calorimeter²⁹. The interaction of Ca^{2+} and Mg^{2+} with albumin was studied by titration of 0.2 ml of a 0.1 M aqueous metal ion solution into 2-7 ml of a 4 mg/ml aqueous solution of the albumin. The measured ΔH values for these interactions were close to zero. Therefore, the interaction was studied indirectly by titration of solutions of the albumin or albumin plus CaCl₂ and/or MgCl₂ with HCl. The **metal ion concentrations used were** high to force saturation of the metal binding sites_ All titrations were made at *25°C.* Four replicate runs were made for each experimental condition studied. Heat of dilution corrections were determined by addition of the titrant to H_2O . The methods used for data reduction^{30, 31} and analysis³² have been published. The pH titration data were obtained under conditions identical to those employed in the calorimetric studies.

RESULTS

The calorimetrically determined ΔH values for the interaction of Ca^{2+} and Mg²⁺ with I are 0.0 ± 0.1 and -0.2 ± 0.1 kcal/mole, respectively. The measured heat effects for the binding of both Ca^{2+} and Me^{2+} were too small to allow calculation of **the** number of metal ions bound per albumin from the calorimetric titration data. Typical data for the titration of I and I plus CaCI, with HCI are given **in Fig. 1. The titration curve covers the pH region from 6.0 to 2.5 and is associated**

Fig. 1. Calorimetric titration curve for the addition of HCl to a 4 mg albumin I/ml solution, and a (4 mg albumin I \div 0.08 mmole CaCl₂)/ml solution, -----, and the corresponding pH titration curves in the presence, $-$, and absence of CaCl₂.

with the protonation of the carboxylate groups³³ in the albumin molecule. The calorimetric titration curve in the absence of $Ca²⁺$ shows no anomalies. Under the **conditions of these experiments (4 m_e protein/ml> no ndditional heat effects are observed through the Foster N-F transition region²²⁻²⁵ when titrating with acid in the absence of metal ion. However, heat effects due to this transition are observed** as a function of albumin concentration and are influenced by the presence of Ca^{2+} and Mg^{2+} .

The new endothermic region present in the titration of albumin plus CaCl, with HCI, Fig. 1, can be attributed to the titration of those carboxylate groups bound **to Ca'+_ Titration of the aIbumin-CaCI, solutions with NaOH indicates addition of the metal ion does not induce a similar anomaiy in the resions where imidazole, phenolic or amino groups are titrattd. For example, the titration of the 17 imidazole** and 1 α -amino groups³³ in solutions containing 0.10 or 0.0050 M CaCl₂ gives identical end points with 18.6 \pm 0.6 total groups titrated and ΔH_i values of \rightarrow 7.0 \pm 0.2 and \rightarrow 6.4 \pm 0.1 kcal/mole, respectively, for the two Ca²⁺ concentrations. The endo**thermic region shown in Fig. 1 is only present where carboxylate groups are being** titrated and only when Ca^{2+} is present in the solution. Further, the length of the region is directly proportional to the metal ion concentration. The length of this region is a measurement of the equivalents of acid required to protonate those carboxylate groups bound to Ca^{2+} , and, therefore, is a direct measure of \bar{v} , the number of carboxylate groups bound to Ca²⁺ per molecule of albumin. Similar results are obtained for different concentrations of CaCl₂ and MgCl₂ and for titration **of solutions containing albumin plus both CaC12 and MgC12. Similar results were also obtained for II_ Data for II are somewhat more compiex since all carboxylate** groups in II did not titrate with the same ΔH value. An endothermic region similar **to that seen in Fis 1 was also evident for titrations of II plus CaCl, and/or M&I,** with HCl. The apparent ΔH values for protonation of the metal binding carboxyl groups in the albumins studied in the absence and presence of metal ions are given **in Table 1. The measured** \bar{v} **values are given in Table 2.**

TABLE I

CALORIMETRICALLY DETERMINED .1H VALUES AT 25°C FOR THE PROTONATION OF ALKALINE EARTH BINDING CARBOXYL GROUPS IN ALBUMIN IN THE PRESENCE AND ABSENCE OF Ca²⁺ OR Mg²⁺

TABLE 2

CALORIMETRICALLY OBTAINED VALUES OF \bar{V} FOR ALKALINE EARTH BINDING CARBOXYL GROUPS IN AQUEOUS ALBUMIN SOLUTIONS AT 25°C

 \bar{y} **= number of Ca² and/or Mg²⁺ binding carboxyl groups per albumin molecule.**

DISCUSSION

The results summarized in Fig. 1 and Tables 1 and 2 indicate Ca^{2+} and Mg^{2+} **complexes with the** *carboxylate* **groups of albumin as only carboxyiate groups are perturbed** by the addition of Ca^{2+} and/or Mg^{2+} . If binding involves independent and equivalent sites then³⁴

$$
\frac{\bar{v}}{n-\bar{v}} = K[M^{2+}]
$$
 (1)

or

$$
\bar{v} = (n - \bar{v})/K[M^{2+}]
$$
 (2)

where *n* is the total number of carboxylate groups which can bind the metal ion, $[M^{2+}]$ is the concentration of unbound metal ion in the solution and K is the **equilibrium** constant **for association of the metal ion with the protein_ If a value** is assumed for the number of carboxyl groups bound per metal ion, n' , then $\lceil M^{2+} \rceil$ may be calculated for each condition studied from eqn. (3) where $[M_{total}^{2+}]$ is the total metal ion concentration and [Pr] is the total concentration of the protein. Assuming the maximum number of bound Ca^{2+} ions is 12 as reported by Pedersen^{1, 8, 9}, we

$$
\begin{bmatrix} \mathbf{M}^{2+} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{total}^{2+} \end{bmatrix} - \frac{\bar{\mathbf{v}}}{n'} \begin{bmatrix} \mathbf{Pr} \end{bmatrix} \tag{3}
$$

Fig. 2. A plot of \bar{v} vs \bar{v}_i [M²⁺], l/mole, for the data obtained for albumin sample I.

conclude three carboxyi groups (a total of 36) are involved in the binding of each Ca*' ion. This is consistent with results reported in X-ray structure studies of calcium-protein crystals³ where three or four carboxyl groups are found associated with the calcium ion. The binding of Mg²⁺ to albumin involved fewer carboxyl groups as compared to that for Ca^{2+} for any given total metal ion concentration. The data **with sample I, however, indicate that over 30 carboxyl groups can be involved in the** binding of Mg^{2+} . The studies on solutions with both Ca^{2+} and Mg^{2+} present indicate the binding is competitive. Therefore, we conclude that three carboxylate groups are also bound to each Mg²⁺. With these assumptions, a plot of \bar{v} vs. \bar{v} / $\lceil M^{2+} \rceil$ should be linear with a slope of $-1/K$ and an intercept of n. Such a plot is given in Fig. 2 for the data obtained with Aibumin I assuming $n' = 3$. Least squares fit of the data gives $n = 36.3 \pm 1.0$ and $\log K = 2.72 \pm 0.02$ for the binding of Ca²⁺ and $n = 43.9 \pm 0.6$ and log $K = 1.12 \pm 0.05$ for the binding of Mg²⁺. Because **of the Iarge excess of metal ion used in these experiments, the results obtained for R and log K are not sensitive** to the **value of n' used and the calculated n and log K values** obtained with $n' = 2$ or 4 are not significantly different from those obtained with $n' = 3$. The single data point for albumin sample I with both MgCl₂ and CaCl₂ indicates the binding of the two cations is highly competitive. The calculated \bar{v} value using the log K values obtained with only Mg^{2+} or Ca^{2+} in solution, and assuming complete competition for all binding sites, is 35.3 compared to the experimentally obtained value of 37.3 \pm 3.5, see Table 2. If the binding for Mg²⁺ and Ca²⁺ was independent the calculated \bar{v} value would be 60.6. The data obtained for albumin **sample I are then consistent with the model where 36 carboxyl groups in albumin** can competitively bind 12 Ca²⁺ (log $K = 2.72$) or, presumably, 12 Mg²⁺ (log $K =$ 1.12) **ions.**

Human serum albumin contains 89 carboxylate groups and 13 histidyi **resi**dues³⁵. In the amino acid sequence of human serum albumin kindly provided by Professor J. R. Brown (Department of Chemistry, University of Texas, Austin^{35, 36}) one finds that of the 89 carboxylate groups (36 asparatyl and 53 glutamyl) only 30 occur as doublets (i.e. -glu-glu-, -asp-asp-, and -asp-glu-). If all these sites bind calcium then I5 caiciums would be bound at szturation.

The data by Pedersen^{1, 8, 9} indicating a maximum of 12 Ca^{2+} ions bind and our data indicate a total of 36 carboxylate groups are involved in this binding su_ggcst that I2 of these doublets plus 12 **other carboxyiate groups may be involved in the** binding of Ca^{2+} to albumin. If all doublets plus fifteen other carboxylate groups were involved **in binding a metal ion the total number of carboxylate groups measured** would be 45. Interestingly, this is similar to what is measured for Mg^{2+}

The binding of both Mg^{2+} and Ca^{2+} to sample II is significantly different from that for I. At equivalent levels of total metal ion the \bar{v} values are significantly lower **for** sample II than for I. Last squares fit of the data for sample II to cqn. (2) assuming an n' value of 3 results in $n = 23.4$ and log $K = 2.22$ for Ca^{2+} binding and $n = 21.7$ and $\log K = 2.20$ for Mg^{2+} binding. These values would predict a \bar{v} of 25.4 for the **solution with** both CaCi, and MgCi, if the binding is competitive, in good agreement with the experimental value of 23.2 \pm 3.8. In contrast, the \bar{v} value predicted if Ca²⁺ and Mg²⁺ bind independently is 41.0. The data, therefore, suggest that sample II **has only 2/3 the sites of sampie I available for binding and presumably wili bind only 2/3 the metal ion. Sample** II **is the less pure of the two samples, the difference being the presence** of sodium caprylate and/or acetyi tryptophonate as a contaminant of the commercial preparation process. Heat denaturation occurs rapidly in boiling water for sample I but no evidence of denaturation of sample II was detected after such treatment for 10 min.

The measured heats of protonation of the carboxyiate groups in the presence and absence of metal *ions* provide insight to environmental changes which occur in the protein as metal ions are complexed. The **A** W **value for protoaation of the carboxylate** groups involved in Ca^{2+} and Mg^{2+} binding is more endothermic in the presence of the metal ions than would be predicted by the ΔH values for complexation of the **metal ions with albumin. This suggests that the environment of the carboxylate groups** that are protonated is not the same for the initial solution ($pH = 6.0$) as at the pH at which they are protonated in the presence of Ca^{2+} or Mg^{2+} (pH = 4.5). This **difference may be** attributed to dielectric changes in the region of the carboxyiate groups resulting from the N-F transition or to specific changes in other carboxyiateprotein bonds. Harmsen et al.⁴, and Eastman et al.⁵ have proposed that binding of $Ca²⁺$ to the protein involves the breaking of a carboxylate-imidazole hydrogen bond. At $pH = 6.0$ the hydrogen bond can be assumed to exist since essentially all carboxyiate groups will be **ionized and all imidazoie groups protonated. At pH = 4.5, presumably the** hydrogen bond would not exist due to protonation of the carboxylate groups. The reactions ocuuning can be represented by the cycle

 ΔH_{HR} is the enthalpy change associated with forming the carboxylate-protonated imidazole hydrogen bond in the protein. AH_{M^2+} is the enthalpy change associated with formation of the carboxylate-metal ion bond. The ΔH value measured by **titration of the protein with metal ion would be a sum of** AH_{M2} **, and some fraction** of $-\Delta H_{HR}$, depending on the magnitude of the equilibrium constant for the hydrogen **bonding reaction_ Addition of the metal ions to the protein then induces the breaking of thris hydrogen bond and compIe.xation of the metal ion with the carboxylate groups occurs. Addition of hydrogen ion to the protein solution in the absence of metal** ions involves the breaking of the hydrogen bond and formation of protonated carboxylate groups, $AH_{1(2)}$. In contrast, addition of hydrogen ion to the metal ioncarboxylate complex involves only the breaking of the metal ion-carboxylate bond **and protonation of the carboxylate anion, but not the breaking of the hydrogen bond** and $AH_{(t)}$ is measured. If we assume that in the protein solution the hydrogen bond is stoichiometrically formed, then the difference in AH _i values in the absence or **presence of metal ion is the heat due to formation of the hydrogen bond. Albumin** contains only 17 imidazole groups per monomer³³ and the number of carboxylate **groups involved in hydrogen bonding per bound metal ion would not exceed one, i-e_ one hydrogen bond for every three carboxylate groups involved in metal binding. With these assumptions, we calculated the apparent** *AH* **value for formation of the** carboxylate anion-protonated imidazole hydrogen bond in albumin to be $\rightarrow 0.9$ **kcal/mole of metal ion for both samples of albumin studied_ The calculated values of log K for metal binding as a function of pH will also reflect the formation or breaking of this hydrogen bond. Based on literature results^{1, 9, 17} for log K of Ca²⁺**albumin interaction in the pH range from 4 to 8 the apparent free energy for formation **of the carboxylate anion-protonated imidazole hydrogen bond can be estimated** to be -1.2 kcal/mole and the ΔS value to be -1 e.u. These values are consistent **with those expected for hydrogen bond formation, suggesting the indicated mechanism may be correct_ It should be emphasized, however, that a_eree;nent between expected** and calculated thermodynamic values does not confirm the proposed mechanism **but only** indicates **its phusibility-**

ACKNOWLEDGEMENTS

Part of this study wzs supported by the Veterans _Administration Research Scmkc (S.J.R. and H.F.L.).

REFERENCES

- *1 K. 0.* **Pcdcrscn, Scar&.** *J. Clin. Lab. Invest., 30 (1974) 89, 321.*
- *2* **F. C. McLean and A. B. Hastings.** *1. Bid. Chem.. 108 (1935) 285.*
- *3* H. Siget, *High Molecular Complexes, Metal Ions in Biological Systems, Vol. 3, Marcel Dekker,* **New York, 1974, pp.** *76-80.*
- *4* **B. J. M. Harmscn. S. H. DeBruin. L H. M. Janssen, J. F. Rodriques Dc Mirzznda and G. A. J. Van 05.** *Biochemisfry, 10* **(1971)** *3217.*
- *5* **J. W. Eastmm. S. J. ReNeId and H. L&en.** *Cfin. Chim. Acla. 58 (1975) 233.*
- *6* **E. W. Mwrc, Am. Sbc.** *C./in. fnvesr., Proc. Ann. Meering.* **(1974) 66.**
- *7 EL* **F. Lokcn, R J. HaveI, G. S. Gordon and S. L. Whittington,** *J. Biol. Gum., 235* **(1960)** *3654.*
- *8* **K. 0. Pcduun. Stand. /.** *Clin. Lab. Inwsr., 28* **(1971) 459.**
- **9 K. 0. Pederssn.** *Scatzd. J. Clin. Lab. Invest.. 29* **(1972)** *75.*
- **10 J. S. Jxobs, R S. Hattncr and D. S. Bernstein, Clin.** *Chim. Acfa, 31* **(1971) 467.**
- **I1 S. Katz and I. M. Klotz, Arch.** *Biochem., 44 (1953) 351.*
- **12 L. I. Irons and D. J. Perkins,** *Biochem. J., 84* **(1962) 152.**
- 13 C. W. Carr, Arch. Biochem. Biophys., 46 (1953) 424.
- *14* **J. T. Edsall. H. EdeIhoch. R. Lontie and P. R Morrison,** *J. Am. Chem. Sot., 72* **(1950) 4641.**
- **15 H. A. Saroff and M. S. Lewis,** *1. Phys. Chem-. 67 (1963)* **1211.**
- 16 I. R. Held and S. Freeman, *J. Appl. Physiol.*, 19 (1964) 292.
- 17 N. A. Peterson, G. A. Feigen and J. M. Crismon, *Am. J. Physiol.*, 201 (1961) 386.
- 18 N. A. Peterson, J. M. Crismon and G. A. Feigen, *Nature (London)*, 193 (1962) 439.
- **19 E. G. Weir and A. B.** Hastings, *J. Biol. Chem.,* **114 (1936) 397.**
- **20 W. J. Leonard. Jr.. K.** K. **Vijai and J. f. Foster,** *J. Biol. Chem.,* **238 (1962) 1984.**
- **21 V. R. Zwawski and J. F. Foster,** *Biochemisfry,* **13 {1974) 3465.**
- **22 C. Tanford.** *1. Am. Chum. SC., 72* **(1950) 441.**
- 23 **J. T. Yang and J. F. Foster,** *J. Am. Chem. Soc.***, 76 (1954) 1588.**
- **24 J. T. Yang and J. F. Foster.** *J. Am. Gem. Sot., 77 (1955) 2374.*
- *25 K.* **Aoki and J. F. Foster,** *J. Am. Chem. Sot., 78 (1956) 3538.*
- *36 B.* **E.** Copeland and **F. W. Sundcman,** *J. Biol. Chem., 197 (1952) 331.*
- *27* **C. W. Carr and K. R Woods.** *Arch. Biochem. Btiphys., 55* **(1955) 1.**
- 28 **R. M. Frye, H. Lrts and G. A. Rcciit~ Cliw** *Biochcm., 7* **(1974)** *258.*
- 29 L. D. Hansen, R. M. Izatt, D. J. Eatough, T. E. Jensen and J. J. Christensen, *Analytical Calorimerry, Vo!. 3.* **Plenum Prcs, New York,** *1974.* **pp. 7-16.**
- **j3 L. D. Hanscn. T. E. Jensen, S. hlaync. D. J. Eatough R M. Izatt and J. J. Christensen.** *J. Chem. iThermo&n.. 7* **(1975) 919.**
- **31 D. J. Eatough. J. J. Christcnscn and R M.** Intt. *Thermochim. Acfa, 3 (1972)* **219.**
- *32* **R M. Izztt, L. D. Hansen, D. J. &tough, T. E. Jensen and J. J. Christensen,** *Anafj-rical Cnlorimetry*, Vol. 3, Plenum Press, New York, 1974, pp. 237-248.
- 33 C. Tanford, Advances in Protein Chemistry, Vol. 117, Academic Press, New York, 1962, pp. **156-160.**
- **34 J. Stcinhzxdt and J. A.** Reynolds, *Multiple Equilibria in Proreins_ Aadanic* **Press, 'NW York, 1969, pp. 12-16.**
- **35 J. R Brown.** *Fed. Proc.. Fed. Am. Sot. fip.* **Biol.. 35 (1976) 2141.**
- **36 P. Q. Bchrcns, A. M. Spiek-mssnn and J. R. Brown,** *Fed. Proc., Fed. Am. Sot. Erp. BioL, 34* **(1975)** *591.*